Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(7): 911-923.e4, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38447569

RESUMEN

Autophagy eliminates cytoplasmic material by engulfment in membranous vesicles targeted for lysosome degradation. Nonselective autophagy coordinates sequestration of bulk cargo with the growth of the isolation membrane (IM) in a yet-unknown manner. Here, we show that in the budding yeast Saccharomyces cerevisiae, IMs expand while maintaining a rim sufficiently wide for sequestration of large cargo but tight enough to mature in due time. An obligate complex of Atg24/Snx4 with Atg20 or Snx41 assembles locally at the rim in a spatially extended manner that specifically depends on autophagic PI(3)P. This assembly stabilizes the open rim to promote autophagic sequestration of large cargo in correlation with vesicle expansion. Moreover, constriction of the rim by the PI(3)P-dependent Atg2-Atg18 complex and clearance of PI(3)P by Ymr1 antagonize rim opening to promote autophagic maturation and consumption of small cargo. Tight regulation of membrane rim aperture by PI(3)P thus couples the mechanism and physiology of nonselective autophagy.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Autofagosomas/metabolismo
2.
Nutrients ; 14(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35745108

RESUMEN

Beer is the most consumed alcoholic beverage worldwide. It is rich in nutrients, and with its microbial component it could play a role in gut microbiota modulation. Conflicting data are currently available regarding the consequences of alcohol and alcohol-containing beverages on dementia and age-associated disorders including Alzheimer's disease (AD), a neurodegeneration characterized by protein aggregation, inflammatory processes and alterations of components of the gut-brain axis. The effects of an unfiltered and unpasteurized craft beer on AD molecular hallmarks, levels of gut hormones and composition of micro/mycobiota were dissected using 3xTg-AD mice. In addition, to better assess the role of yeasts, beer was enriched with the same Saccharomyces cerevisiae strain used for brewing. The treatment with the yeast-enriched beer ameliorated cognition and favored the reduction of Aß(1-42) and pro-inflammatory molecules, also contributing to an increase in the concentration of anti-inflammatory cytokines. A significant improvement in the richness and presence of beneficial taxa in the gut bacterial population of the 3xTg-AD animals was observed. In addition, the fungal order, Sordariomycetes, associated with gut inflammatory conditions, noticeably decreased with beer treatments. These data demonstrate, for the first time, the beneficial effects of a yeast-enriched beer on AD signs, suggesting gut microbiota modulation as a mechanism of action.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Fármacos Neuroprotectores , Enfermedad de Alzheimer/metabolismo , Animales , Cerveza/análisis , Ratones , Fármacos Neuroprotectores/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
FEBS J ; 288(9): 2836-2855, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32969566

RESUMEN

The gut microbiota coevolves with its host, and numerous factors like diet, lifestyle, drug intake and geographical location continuously modify its composition, deeply influencing host health. Recent studies demonstrated that gut dysbiosis can alter normal brain function through the so-called gut-brain axis, a bidirectional communication network between the central nervous system and the gastrointestinal tract, thus playing a key role in the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). In this perspective, in the constant search for novel treatments in AD, the rational modulation of gut microbiota composition could represent a promising approach to prevent or delay AD onset or to counteract its progression. Preclinical and human studies on microbiota modulation through oral bacteriotherapy and faecal transplantation showed anti-inflammatory and antioxidant effects, upregulation of plasma concentration of neuroprotective hormones, restoration of impaired proteolytic pathways, amelioration of energy homeostasis with consequent decrease of AD molecular hallmarks and improvement of behavioural and cognitive performances. In this review, we dissect the role of gut microbiota in AD and highlight recent advances in the development of new multitarget strategies for microbiota modulation to be used as possible preventative and therapeutic approaches in AD.


Asunto(s)
Enfermedad de Alzheimer/microbiología , Microbioma Gastrointestinal/genética , Inflamación/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/prevención & control , Enfermedad de Alzheimer/terapia , Antioxidantes/uso terapéutico , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Inflamación/genética , Fármacos Neuroprotectores/uso terapéutico
4.
Aging (Albany NY) ; 12(16): 15995-16020, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855357

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegeneration characterized by neuron death ending in memory and cognitive decline. A major concern in AD research is the identification of new therapeutics that could prevent or delay the onset of the disorder, with current treatments being effective only in reducing symptoms. In this perspective, the use of engineered probiotics as therapeutic tools for the delivery of molecules to eukaryotic cells is finding application in several disorders. This work introduces a new strategy for AD treatment based on the use of a Lactobacilluslactis strain carrying one plasmid (pExu) that contains a eukaryotic expression cassette encoding the human p62 protein. 3xTg-AD mice orally administered with these bacteria for two months showed an increased expression of endogenous p62 in the brain, with a protein delivery mechanism involving both lymphatic vessels and neural terminations, and positive effects on the major AD hallmarks. Mice showed ameliorated memory, modulation of the ubiquitin-proteasome system and autophagy, reduced levels of amyloid peptides, and diminished neuronal oxidative and inflammatory processes. Globally, we demonstrate that these extremely safe, non-pathogenic and non-invasive bacteria used as delivery vehicles for the p62 protein represent an innovative and realistic therapeutic approach in AD.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Encéfalo/metabolismo , Terapia Genética , Vectores Genéticos , Lactobacillus/genética , Probióticos , Proteína Sequestosoma-1/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Conducta Animal , Encéfalo/patología , Encéfalo/fisiopatología , Cognición , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Mediadores de Inflamación/metabolismo , Lactobacillus/metabolismo , Masculino , Memoria , Ratones Transgénicos , Prueba de Campo Abierto , Estrés Oxidativo , Proteína Sequestosoma-1/biosíntesis
5.
Neurobiol Aging ; 87: 35-43, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31813629

RESUMEN

Cerebral glucose homeostasis deregulation has a role in the pathogenesis and the progression of Alzheimer's disease (AD). Current therapies delay symptoms without definitively curing AD. We have previously shown that probiotics counteract AD progression in 3xTg-AD mice modifying gut microbiota and inducing energy metabolism and glycolysis-gluconeogenesis. Ameliorated cognition is based on higher neuroprotective gut hormones concentrations, reduced amyloid-ß burden, and restored proteolytic pathways. Here, we demonstrate that probiotics oral administration improves glucose uptake in 3xTg-AD mice by restoring the brain expression levels of key glucose transporters (GLUT3, GLUT1) and insulin-like growth factor receptor ß, in accordance with the diminished phosphorylation of adenosine monophosphate-activated protein kinase and protein-kinase B (Akt). In parallel, phosphorylated tau aggregates decrease in treated mice. Probiotics counteract the time-dependent increase of glycated hemoglobin and the accumulation of advanced glycation end products in AD mice, consistently with memory improvement. Collectively, our data elucidate the mechanism through which gut microbiota manipulation ameliorates impaired glucose metabolism in AD, finally delaying the disease progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , Microbioma Gastrointestinal , Glucosa/metabolismo , Homeostasis , Probióticos/administración & dosificación , Probióticos/farmacología , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/microbiología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Glucólisis/efectos de los fármacos , Ratones Transgénicos , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...